On the intrinsic robustness to noise of some leading classifiers and symmetric loss function

An empirical evaluation
Introduction - Motivations and Framework

- Why?

- In this study, what is done?

- In this study, what is not done?
Fraud detection

Frauds:
Non authorized behaviours, security breaches, ...

Currently:
Fraudsters detected by experts advice and business rules

Automatic detection through supervised learning is critical:
mistakes are very dangerous
penalties inflicted to human actors: fairness, reputation of the group

Objective: Detecting fraudulent behaviour with confidence
Nature of Fraud data

Binary data:
Two classes only, positive and negative (PN)

Unbalanced data:
One class is outnumbered by the other

Data subject to corruption:
Observed examples may be mislabeled
What is done:

Study of the robustness of algorithm to noisy labels

- Tutorial value, **open source**
- Additional results to existing studies
- **Large** range of parameters, datasets, algorithms
- Exploration of **Symmetrical Loss**

- **Only** Noise Completely At Random
- **No** pre-filtering/cleansing
I - Noisy Data

II - Design of the Benchmark

III - Results
I - Noisy Data

II - Design of the Benchmark

III - Results
I - 2. What is noise?

Binary classification:
prediction function from observed individuals:

\[\mathcal{X} \in \mathbb{R}^n, \mathcal{Y} \in \{+1, -1\} \quad f : \mathcal{X} \rightarrow \mathcal{Y} \]

Noise:
Anything that *obscures* the relationship between the features and class of an individual.
Errors, corruptions due to various sources.

Attribute noise vs. Label noise

Moderate impact on classification performances
Important impact on classification performances

Lack of information about the noising procedure, random process:

\[x, \hat{y} \in (\mathcal{X}, \mathcal{Y}), P(\hat{y} = +1 | y = -1) = \rho_{-1}, P(\hat{y} = -1 | y = +1) = \rho_{+1} \]
I - 3. Noise dependency
1 - 3. Noise dependency

[Diagram showing the effect of noise on a classifier.]
I - 3. Noise dependency

Virtual separator as a potential classifier.

- Positive example
- Negative example
- Noised example

Original dataset

- Noisy Completely At Random
 - Uniform noise
- Noisy At Random
 - More noise into negative class
- Noisy Not At Random
 - More noise near boundary
I - Noisy Data

II - Design of the Benchmark

III - Results
II - 1. Implementation

Python with jupyter notebook. Various machine learning libraries.

Objectives (maintainability, speed, quality):

- Store **precise** results
- Use **simple** data structures to store transformed datasets and results
- Benefit from computing power available: use **multiprocessing**
- **Keep track** of maximum informations
- Use **hard drive** rather than RAM
II - 2. Datasets

<table>
<thead>
<tr>
<th>Name</th>
<th>Columns</th>
<th>Numeric</th>
<th>Categorical</th>
<th>Avg modality</th>
<th>Rows</th>
<th>Cells</th>
<th>Minority %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>13</td>
<td>5</td>
<td>8</td>
<td>12,7</td>
<td>48842</td>
<td>634946</td>
<td>23,9</td>
</tr>
<tr>
<td>Bank</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>5,3</td>
<td>41188</td>
<td>823760</td>
<td>3,3</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td></td>
<td>699</td>
<td>6291</td>
<td>34,4</td>
</tr>
<tr>
<td>Eye State</td>
<td>14</td>
<td>14</td>
<td>0</td>
<td></td>
<td>14980</td>
<td>209720</td>
<td>44,8</td>
</tr>
<tr>
<td>Mushroom</td>
<td>22</td>
<td>0</td>
<td>22</td>
<td>5,3</td>
<td>8416</td>
<td>185152</td>
<td>46,6</td>
</tr>
<tr>
<td>Phishing</td>
<td>68</td>
<td>68</td>
<td>0</td>
<td></td>
<td>11055</td>
<td>751740</td>
<td>44,3</td>
</tr>
<tr>
<td>Spambase</td>
<td>57</td>
<td>57</td>
<td>0</td>
<td></td>
<td>4601</td>
<td>262257</td>
<td>39,4</td>
</tr>
<tr>
<td>Trucks</td>
<td>170</td>
<td>170</td>
<td>0</td>
<td></td>
<td>76000</td>
<td>12920000</td>
<td>1,8</td>
</tr>
<tr>
<td>CM1</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td></td>
<td>498</td>
<td>10956</td>
<td>9,8</td>
</tr>
<tr>
<td>JM1</td>
<td>22</td>
<td>17</td>
<td>5</td>
<td>287,8</td>
<td>10885</td>
<td>239470</td>
<td>19,3</td>
</tr>
<tr>
<td>KC1</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td></td>
<td>2105</td>
<td>46310</td>
<td>15,4</td>
</tr>
<tr>
<td>KC2</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td></td>
<td>522</td>
<td>11484</td>
<td>20,5</td>
</tr>
<tr>
<td>KC3</td>
<td>40</td>
<td>40</td>
<td>0</td>
<td></td>
<td>194</td>
<td>7760</td>
<td>18,6</td>
</tr>
<tr>
<td>PC1</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td></td>
<td>1109</td>
<td>24398</td>
<td>6,9</td>
</tr>
</tbody>
</table>
II - 3. Recipe

D publicly available datasets (.csv, .arff, .data, …)

→ Preprocessing / Standardization (missing, column selection, Y binarization) : D x (X, Y) en .csv

→ stratified K fold repeated R times : D x K x R (Xtrain, Ytrain) (Xtest, Ytest)

→ Swap Ytrain labels with a ρ probability scaled to the balance : D x K x R x |ρ| (Xtrain, Ŷtrain)

→ Learning on each set created on A algorithms

→ Evaluation on (Xtrain, Ytrain) and (Xtest, Ytest) with metrics M

→ Résultats : D x K x R x |ρ| x A x M

14 * 10 * 5 * 5 * 12 = 42,000 learnt models
II - 4. Algorithms

Scikit-Learn :
- Linear SVC
- Logistic Regression
- Random Forest

Weka :
- Random Forest

Khiops :
- Base Khiops
- Khiops with Random Forest generated features

XGBoost :
- XGBoost with 4 distinct losses :
 hinge, squared error, unhinged, ramp
II - 5. Symmetric losses

Symmetric loss function if: \(l : \mathbb{R} \rightarrow \mathbb{R}, \ l(z) + l(-z) = K, \) \(K \) being constant

Asymmetric losses:

Symmetric losses:
II - 6. Metrics

Accuracy is a problem for imbalanced datasets

- **Balanced accuracy**
 Accuracy where each individual is weighted with respect to its class probability

- **Cohen’s Kappa**
 \[p_0 \text{ observed agreement ratio} \]
 \[p_e \text{ expected agreement if random decisions} \]
 \[
 Kappa = \frac{(p_0 - p_e)}{(1 - p_e)}
 \]

- **Area Under ROC Curve (AUC)**

I - Noisy Data

II - Design of the Benchmark

III - Results
III - 1. Overview

Results on Breastcancer averaged per metrics, algorithms and noise applied

General decrease of performances along with noise, collapse when noise > minority% : no information left
III - 2. Robustness

\[
\text{Retained Performance} = \frac{\text{Result}_\rho}{\text{Result}_{\rho=0}}
\]

Some algorithms are more stable, are they better?
III - 3. Robustness scenarios

Impact on performances along with noise addition on spambase

Impact on performances along with noise addition on adult
Conclusion
Conclusion

- Random Forest is the best option when low noise
- If noise is suspected to occur, Khiops looks a stable option
- SVM and LR despite being “simple” are quite trustworthy
- Symmetrical Loss look promising, not yet a worth option
Thank you

Questions?